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The paper deals with the numerical analysis of a vector hysteresis measurement system which is now under construction. 
The measurement set up consists of an induction motor which rotor has been removed, and its windings have been 
replaced to a special two phase one which can generate homogeneous magnetic field inside the motor. A round shaped 
specimen can be inserted into the arrangement. The two orthogonal components of the magnetic field intensity and of the 
magnetic flux density vectors can be measured by H-coils and B-coils, respectively. The Finite Element Method (FEM) with 
the Φ−Φ,T  potential formulation has been applied in the simulations. The vector hysteresis property of the specimen 
has been approximated by the vector Preisach model, finally the nonlinear problem has been solved by the convergent 
fixed point technique. The aim of the present work is to focus on the design aspects of this kind of measurement system. 
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1. Introduction 
 
The RRSST (Rotational Round shaped Single Sheet 

Tester) system is one of the possible measurement 
arrangements of the two dimensional vector hysteresis 
properties. In this case, the specimen has round shape, and 
consequently it can be put inside a rearranged induction 
motor. The other is to use square shaped specimen 
(RSSST) or hexagonal shaped specimen with special yoke. 
There are many other, but not commonly used 
measurement set up. First, the RRSST system has been 
analyzed, because the yoke is very cheap and it is easy to 
get [3,4]. The aim of this paper is to study the behavior of 
this measurement set up by applying a FEM procedure 
connected with the vector Preisach model of hysteresis 
[2,5]. 

 
2. The measurement set up 
 
The block diagram of the two dimensional vector 

hysteresis measurement set up can be seen in Fig. 1. The 
RRSST system is an induction motor which rotor has been 
removed and the round shaped specimen has been installed 
in this place. The magnetic field inside the specimen can 
be generated by a special two phase winding which can be 
studied in Fig. 2. The two orthogonal components of the 
magnetic field intensity or of the magnetic flux density can 
be controlled by two independent current generators and 
the waveform of currents )(tix  and )(tiy  can be set by a 

PC. The two orthogonal components of the magnetic field 
intensity vector and of the magnetic flux density vector 
inside the specimen can be measured by a sensor system. 
The tangential component of the magnetic field intensity 
can be measured by a coil placed onto the surface of the 
specimen (H-coils), the magnetic flux density inside the 
specimen can be measured by a coil slipped into holes of 
the specimen (B-coils). The magnetic field intensity can be 

measured by Hall sensors as well. These four signals can 
be measured by a NI-DAQ card  (National Instruments 
Data Acquisition Card) installed on the PC, and a 
LabVIEW based software controls the measurements. 

 
 

 
 

Fig. 1. The block diagram of the measurement system 
 
 
 

 
 

Fig. 2. The special two phase winding to generate a magnetic 
field specified by two orthogonal components 

 
 
 
 



M. Kuczmann 
 

1824 

3. Governing equations 
 
The measurement system presented in Section 2 can 

be efficiently simulated by FEM [1]. The stator core is 
made of laminated iron that is why the eddy currents have 
been neglected there. Eddy currents have been taken into 
account only in the specimen. According to the 
preliminary studies of the problem, the magnetic field 
intensity is much smaller inside the stator core than inside 
the specimen, so a linear characteristic has been supposed 
inside the stator core, and a nonlinear hysteretic one inside 
the specimen. The hysteresis characteristic of the material 
has been simulated by the vector Preisach model [2,5]. 

The Maxwell’s equations in the eddy current free 
region nΩ  are as follows: 

 
HBBJH μ==⋅∇=×∇   ,0  ,0 ,in nΩ ,(1) 

 
where H , B , 0J  and μ  are the magnetic field 
intensity, the magnetic flux density, the excitation current 
density and the permeability, respectively, moreover 

0μμ =  in air and 04000μμ =  in the stator core ( 0μ  
is the permeability of vacuum). The following Maxwell’s 
equations have been used inside the specimen cΩ : 
 

{ }HBBBEEH Bt ==⋅∇∂−∂=×∇=×∇   ,0  ,/  ,σ ,

in cΩ ,(2) 
 

where H , B , E , σ  and {}⋅B  are the magnetic 
field intensity, the magnetic flux density, the electric field 
intensity, the conductivity and the hysteresis operator. The 
vector hysteresis property of the magnetic material has 
been represented by the vector Preisach model. 

The nonlinear and hysteretic relationship between the 
magnetic field intensity vector and the magnetic flux 
density vector has been handled by the polarization 
method as [6] 

 
{ } RHHB +== FPB μ ,in cΩ ,(3) 

 
where FPμ  is an optimal value of permeability, and 

R  is the nonlinear residual term which can be calculated 
by an iterative technique based on the fixed point theorem. 
The value of FPμ  is usually selected as 

2/)( minmax μμμ +=FP  with the maximum and 
minimum slope of the characteristic, and it does not 
change during the fixed point based nonlinear iteration. 
The applied hysteresis characteristic in the x direction, the 
linear term xFP Hμ  and the nonlinear residual xR  can 
be seen in Fig. 3. 

 

 
 

Fig. 3. The applied hysteresis curve and terms in (3) 
 
 

In this model, the direct hysteresis model has been 
used which input is the magnetic field intensity vector. It 
can only be done if the so called Φ−Φ,T  potential 
formulation is used [1]. The reduced scalar magnetic 
potential Φ  can be applied in the eddy current free region 

nΩ , and the current vector potential T  with the reduced 
scalar potential Φ  can be applied in the eddy current 
region cΩ  to represent the magnetic field intensity 
vector. The two regions must be coupled through the 
interface between them.  

Starting from the solenoidal property of the excitation 
current density, an impressed field quantity 0T  can be 
introduced to represent the excitation current, i.e. 

 

000       0 TJJ ×∇=→=⋅∇ ,(4) 
 
which has been represented by vector shape functions 
associated to the edges of the FEM mesh, and 0T  has 
been calculated by the Biot-Savart’s law [7]. Substituting 
the representation in (4) into the first Maxwell’s equation 
in (1) results in 
 

Φ∇−= 0TH ,in nΩ .(5) 
 

The solenoidal property of the magnetic flux density 
in (1) can be reformulated by the following partial 
differential equation: 
 

[ ]( ) 00 =Φ∇−⋅∇ Tμ ,in nΩ .(6) 
 

The eddy current field Eσ  has also the solenoidal 
property, i.e. 0)( =⋅∇ Eσ , and it can be represented by 
the unknown current vector potential T  as TE ×∇=σ , 
from which the electrical field intensity can be expressed 
as TE ×∇=  /1 σ . Substituting the representation of 

Eσ  into the first Maxwell’s equation in (2) results in 
Φ∇−= TH , however the formulation 
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Φ∇−+= TTH 0 ,in       cΩ (7) 
 
is usually applied, because then it is easier the coupling of 
the eddy current free problem to the eddy current one 
along the interface between the two regions [7]. 
Substituting this representation with the polarization 
formula of the magnetic flux density (3) into the second 
Maxwell’s equation in (2) results in the nonlinear partial 
differential equation 
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The second term in the above equation must be 
inserted as implicit Coulomb gauge enforcement to satisfy 

0=⋅∇ T  [1]. The solenoidal property of the magnetic 
flux density in (2) can be written as 
 

[ ]( ) 00 =+Φ∇−+⋅∇ RTTFPμ ,in cΩ .(9) 
 

The partial differential equation (6) in the air region 
and in the stator core, moreover the nonlinear partial 
differential equations (8) and (9) are valid in the specimen. 
The two formulations must be coupled through the 
interface between the air region and the specimen. The 
tangential component of the magnetic field intensity and 
the normal component of the magnetic flux density must 
be continuous on this surface. This results in the Dirichlet 
type boundary condition 0nT =×  [1]. Only the half of 
the arrangement has been analyzed because of symmetry 
along z=0 plane. Here 0=⋅nT  has been applied [1]. 

 
 
4. FEM formulation of the problem 
 
The problem has been solved by FEM. The x-y plane 

of the arrangement has been discretized by triangular mesh 
(Fig. 4) which has been extruded in the z direction. The 
impressed field 0T  has been represented by edge 

elements, the unknown potentials T  and Φ  have been 
approximated by nodal elements [1,7]. The x component 
of the Biot-Savart field can be seen in Fig. 5. 
 

 
 

Fig. 4. The triangular mesh in the x-y plane. 
 

 
 

Fig. 5. The x component of Biot-Savart field 
 

 
The weak formulation of the partial differential 

equations can be formulated by using the Galerkin form of 
the weighted residuals method, 
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Here W  is the shape function of the unknown 

current vector potential T , N is the shape function of the 
reduced scalar potential Φ . The time derivative of 
equations (9) and (6) must be taken because of symmetry 
of the resulting system of equations. 

The system of the nonlinear ordinary differential 

equations (10)-(12) has been solved in the thn )1( +  time 
step by the following scheme, 
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where tΔ  is the time stepping of the time 

discretization. This results in 
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In these studies 3/2=ϑ  has been used (Galerkin 
scheme). 

The problem is nonlinear, which must be solved 
iteratively. The applied fixed point based algorithm is very 
simple: 

 
1. Starting from demagnetized state, 0H = , 

0B = . Calculate FPμ  using the x component of 
the vector hysteresis characteristics. 
2. Solve the equations (14)-(16) in the time step 
(n+1). 
3. Calculate the magnetic field intensity inside the 
specimen, Φ∇−+= TTH 0 . 
4. Calculate the magnetic flux density by the 
hysteresis model, { }HB B= . 

5. Update the residual term )1( +nR  as 
HBR FPμ−= . 

6. Repeat from step 2 until convergence. 
 
This procedure is convergent, but unfortunately it is 

very slow. 
 
 
4. Numerical results 
 
The independent excitation currents have been 

prescribed as ( )αω += tIti xx sin)( , and 

( )βω += tIti yy sin)( . The amplitude and the phase 

of currents define the polar angle and amplitude of the 
magnetic field intensity vector or the magnetic flux density 
vector. Controlling the flux or the magnetic field can be 
worked out by an iterative feedback algorithm which 
simulation is time consuming. Here the relationship 
between the currents and the magnetic field intensity is 
studied at Hz5=f , Hz50=f  and Hz500=f . 

The conductivity of the specimen is S/m102 6⋅=σ , 
the value of FPμ  is about 04000μ , and the peak value 
of currents is 1A.  The thickness of the sample is 0.5 mm. 

The FEM mesh consists of 94512 prism elements, the 
number of unknowns is 68893, and 5800 vector hysteresis 
models with 20 scalar models per one vector model, i.e. 
the full number of Preisach models is 116000. 

Here, only counter clockwise rotation field is 
presented. The aim is to analyze the variation of the 
magnetic field inside the specimen and in the place where 
sensors are usually located. 

The magnetic field intensity has been increased in the 
x direction than it rotates in the counter clockwise 
direction. The stationary state of the two orthogonal 
components of the magnetic field intensity at point 

x=y=z=0 can be seen in Fig. 5 and in Fig. 6. The effect of 
eddy currents can be sensed at Hz500=f , however 

Hz50=f  seems to be almost the same as the results of  
Hz5=f  calculations. Fig. 8 and Fig. 9 show the time 

variation of the x and of the y components of the magnetic 
field intensity at some points inside the specimen 
( Hz50=f ). The coordinates are given in the legend of 
the figures in mm, and z=0. It can be concluded that the 
magnetic field intensity is almost homogeneous inside the 
specimen, however its behavior is very strange close to the 
boundary. It determines the size of B-coils, i.e. B-coils 
should not be as wide as the specimen. 
 
 

 
 

Fig. 6. Variation of x components of  the magnetic field 
variation at x=y=z=0 

 
 

 
 

Fig. 7. Variation of y components of  the magnetic field 
variation at x=y=z=0 
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Fig. 8. Variation of x components of  the magnetic field 
variation at some points 

 

 
 

Fig. 9. Variation of y components of  the magnetic field 
variation at some points 

 
 

 
 

Fig. 10. The magnetic field intensity is increasing by 
increasing the distance between H-coil and the surface of  
                                   Specimen. 

 
 

The magnetic field intensity is increasing almost 
linearly measuring from the surface of the specimen where 
the H-coils are usually located. Fig. 10 shows this 
variation.  

 
 

Applying more than one H-coil in every direction, the 
magnetic field intensity components on the surface of the 
specimen can be extrapolated. 

 
 
5. Conclusions 
 
The numerical analysis of a RRSST system has been 

shown in the paper. The FEM with the 2D vector Preisach 
model has been used for the simulations. The magnetic 
vector potential assumes an inverse vector hysteresis 
operator which is very slow in case of using the direct 
model in inverse mode as it was presented in [2]. The 
potential formulation used here enables the use of direct 
model which speeds up the algorithm. Aim of further 
research is to use a faster nonlinear solver (the Newton-
Raphson scheme), and to analyze the effect of anisotropy. 
Finally numerical results must be compared with measured 
ones. 

The problem has been solved by the help of functions 
of the commercial FEM solver COMSOL Multiphysics. 
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